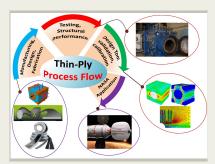
Small Business Innovation Research/Small Business Tech Transfer

Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I

Completed Technology Project (2018 - 2019)


Project Introduction

Use of thin ply composites offers good potential for significant mass savings for aerospace structures besides its improved resistance to micro-cracking, fatigue, and delamination. However, mass savings due to thin-ply technology depends on material and fabrication technology, vehicle configuration, structural design, loads etc. Structural integrity of components made from thin plies need to be characterized over the service life considering the operational and environmental loads. Analysis packages are therefore needed to study how the thin ply manufacturing process parameters, part design and fabrication affect the properties and performance of the composite part over the service life. TDA, therefore, proposes to develop an integrated assessment tool for thin-ply composites including manufacturing process, material characterization and performance evaluation which results in improved design of aerospace structures. Our analysis methods and tools provide NASA and other industry users to evaluate, test numerous different carbon manufacturing technologies in order to cover all requirements as needed.

Anticipated Benefits

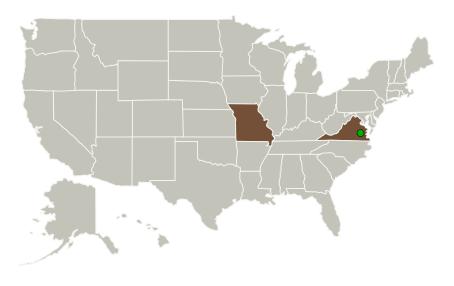
Thin Ply composites potential for use in NASA's applications arises from its higher fatigue and temperature cycling resistance, and superior capability in leak-tightness and micro cracking resistance. We foresee the immediate application of advances of our analysis tool to assess thin ply composites for use on pressurized structural systems such deep space habitation structures, and on reconnaissance aircraft, whether it is for integral tanks and other airframe structural parts.

We foresee use of thin ply composites in advanced components for the space, aeronautics, automotive, renewable energy and machine building industries. Our analysis methods and tools provide users to evaluate, test numerous different carbon manufacturing technologies in order to cover all requirements as needed. Our tools will allow users to accept product design and performance limitations due to manufacturing and procurement constraints.

Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3



Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I

Completed Technology Project (2018 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Technical Data Analysis, Inc.	Lead Organization	Industry	Falls Church, Virginia
Langley Research Center(LaRC)	Supporting	NASA	Hampton,
	Organization	Center	Virginia
Missouri University of	Supporting	Academia	Rolla,
Science and Technology	Organization		Missouri

Primary U.S. Work Locations	
Missouri	Virginia

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Technical Data Analysis, Inc.

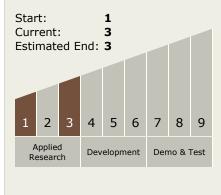
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

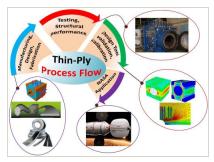
Mehdi Naderi

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I

Completed Technology Project (2018 - 2019)



August 2019: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/137868)

Images

Briefing Chart Image

Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I (https://techport.nasa.gov/imag e/127496)

Final Summary Chart Image

Multiscale Design Tool and Process Development of Thin-Ply Composites, Phase I (https://techport.nasa.gov/imag e/131490)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - ☐ TX12.4 Manufacturing
 - ☐ TX12.4.1 Manufacturing Processes

Target Destinations

Earth, The Moon

